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SUMMARY

The equation for steady—state temperature distribution caused by a

thermsl source (or sink) in a flat plate surrounded on either side by
fluids of different temperature 1s developed and applications are pre—

sented in three sections in this report. The applications are @s_fqllqwsz

(a) A thermal error which occurs when thermocouples ers used for
the measurement of plate temperatures is described, and an
analytical prediction of this error is obtalnsd.

(b) A determination is made of the effect on heat—transfer rate
in pin—fin plates due to the thermal conductivity and thickness
of the plate mstal.

(c) The temperature—distribution equation is applied .to the heat
meter and a correctlon factor is obtained which includes con—
sideration of the effect produced by the flow of heat "around"
the heat mster. :

INTRODUCTION

This report describes technliques Involved 1n meking certain thermal

measurements which are necessary in the analysis of heating problems

in aircraft and contains the general solution for the determination

of the steady—state temperature distribution caused by thermal sources
(or sinks) in plates surrounded on either side by fluids of different
temperature. The terms "source" and "eink" are used to denote a means Of
edding heat to or subtracting it, respectively, from a substance. As_

is shown later, thermocouple leads and fins may be considered to be
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gources or sinks of heats The flrst application of-the solutlion is %o
the calculation of the thermal error of thermocouple tempersture

indications when the thermocouple is employed to measure plate—— FH
temperatures. oT o

Accurgte measurements of surface temperatures are ussful in determining
local heabt—transfer rates, for Instance, in an exhaust-gas alr hester or
along an airfoll surface and Iin evalueting thermel stresees ani temperature o
disgtributions which are criterions of the stabllity and life of a
heater unit.

The analytical approach to the determination of a thermal error _ ) o
considers the Junctlon of the thermocouple in the plate to-be a thermal o
source (or sink depending on whether the thermocouple leads are exposed __ T
to the hovter or colder fluid). The physical system can be visualized
best by focuslng attention on the cese for which the leads are exposed
to the howter fluld. The thermocouple leads, 1in thils case, are at-a
higher temperature than the plate because they are not being cooled by
exposure w0 & cooler fluld as is the plate. Comsequently, heat—wlll ) o
flow through the leads to the plate thus increasing the temperature of o
the thermocouple Jjunction and the plate In the immediabte viclinity of the
Junction, which thus acts as a heat source. The thermal error cf the
thermocouple is defined as the dlfference in the temperature of the ' }
thermocouple Junction and that of the plate far away (or the eguivalent; - E
the temperature at any point of the plate in the absence of the . -
thermocouple ). This thermal error ie not to be confused with electrical
metellurglical, method cof-attachment, or other errars to which N o
thermocouples are subject.

The gédierél solution l1s also epplied, in this report; to the
calculation of the effect of plats thermal conductivity on heat—
transfer rates for pln—fin plates. Ordinarily the thermal conductivity
of a thin metallic plate is so large compared with the convective cop— } _—
ductances on either side that the thermsal resistance of the plate can
be negleclted in heat—rate calculetions. When pin fins are present, o
however, conditions may be obtalned that promote heat flow radiaslly in ) -
the plate from the pin bases. Under theess conditions the thermal con— : -
ductivity of. the plate can becoms an lmportant factor in sgome cases. ) o
Thé equations which allow calculation of heat-rates in pin—fin plates
of finite resistence are developed and thess are compared with the _ e
usual equations for heat—trensfer rates in pin—fin plates which =~
postulate infinite thermal conductivity of the plate. ) ) o

In a thlrd application the solution Is applied to the determina— o
tion of & correction factor for a heat mster when the mester la used tu o
measure the heat rate through a plate. The correctlion factors presented o
before (references 1 and 2) have postulated that all heat flows
through the plate and the meter in the directicn normsl to thelr surfaues._
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This condition does not result when the thermsl conductiviity of the plate
or the plate thickness is large and conditions are such that a part of -
the heat Plow occurs parallel to the plate surface Into or ocut of the
metal dlrectly under the meter. The equation for the correction factor
presented in this report tekes cognizance of this latter condition

Experimental verification of the conclusions reached by means of the
analyses presented in thie report are lacking. An experimental progrem is’
being planned, however, which will allow verificatlon of these conclusions.

This work was conducted at the Unlverslty of Californis under the
sponsorship and with the finaenciael assistance of the National Advisory
Committee for Aeromnasutics.

SYMBOLS .
A area of heat transfer, square feet _
Ay crosg—sectional area of pin fin or thermpgouple lead, square feet N
Ay ﬁnfinned area of pin—fin plate, square feet | - o
a distance between In—line pins, feet o
b thicknsss of plate, fest

Ci» 02 constants

f unit thermal convective conductance, Btu/(hr)(sq £t)(°F)

fe equlivaelent unlt thermal conductance for flow of fluid over
insulated thermocouples, Btu/{hr)(sq £t)(°F)

y unit thermal convective comductance over surface of hest meter,
Btu/(hr)(sq £t)(°F)

I(x) modified Bessel function of the first kind, zero order

I (x) modified Bessel function of the first kind, first order

Ko(x) modified Bessel function of the second kind, zero order (for
a discussion of the rotation used for Bessel functions, o
gee appendix) T

Ky (x) mod1fied Bessel functlon of the second kind, first order

k thermal conductivity, Btu/(br)(sq £t)(°F/f£t)

kg squivelent thermal conductivity, Btu/(hr)(sq ££)(°F/2t)

L length of pin fin, feet



2 L L M TN Te. ws2 L

P circumferential perimeter of pin fin or thermocouple v'-rir_e_; fee&—_’c;'_ T :..,,
a heat~transfer rate, Btu/(hr) , -
a0 hea.t—tra.nsfer rate through plate in absence of heat meter s o

Btu/(hr) S
r radlal distance from source center, feet o
rg radius of source (or sink), feet
Tp redlius of thermocouple lead, feet L.

: At
Re thermal contact resistance <def1ned. by q = ﬁ__c)’ (nr) (°F) /Btu
: (o]

T temperature of fluid, O . i ____
+ temperature of plate, °F _ B _—
ty temperature in pin—fin plate at base of pin, OF - . -
tw temperature that plate would obtaln in absence of source or at

infinits distance from source (defined by equation (8)), °F .
o squivalent to thermsl cond.ucta.ncé (defined in equations (1%)

and (15)), Btu/(kr)(°F)
B defined by equation (10), 1/(sq £t)
5 whickness of an insula."bihg disk (heat meter) placed over the .

gource, feet; also thickness of insulation around thermocouple

leads, feet ) . _ T
Subscripbs: - C B
i, 2 two thermocouple leads . —

P1, Po two opposlite sides of plate e

8 gource ’ ' - o - L

m heat meter
ANATYSTS OF FIAT-PLATE TEMPERATURE DISTRIBUTTON

The tefiperature distribution and heat—trensfer ceused by a thermal _'
source or sink on & thin flat plate surrounded on either side by flulds .
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of different temperature can be approximgted by an ldeal system which 1s
defined by the following postulates:

(1) That section of the plate occupled by the source (or sink) is
circular and of infinite thermsl comductivity (that is, the section is at
uniform tempersture)

(2) The plate has infinite thermsl conductivity in the direction
normel to its surface (that 1s, there is no temperature gradient normal
to the plate surface at any point)

(3) The temperature of the fluld on each side of the plate is
uniform and constent (steady state)

(4) The unit thermel convective conductances of the Fluids are
uniform over the plate surface

Bocause it can be shown tThat the form of the solution will be
independent of whether the temperature distribution is caused by a source
or & slnk, the distribution will be considered, for convenience, as "being
due to a source. Similarly, one specific side of the plate wlll be
considered to be in conbtact wlth a hot fluid and the other side in
contact with a cold fluld, even though the analysis can be ca.r:ried
through without knowledge of the dlrection of the heat f£low. T

The solution is obtained by making a heat—rate balance on a
differentlial esnmulus of radiuvs r and width dr which is concentric
with the source center. (Refer to fig. 1.)

A heat balance on the differentiel anmilus conslsts of the following
terms:

The heat flowling in the plate radlally from the source into the
annulus _ e

at :
Q. = XA (E = —2nrbk (33 (1)
r . .

The heat flowing 1ln the plate radially from the source leaving the
outer rim of the annulus

dt
Upigy = KA dr)

= —2rkb E-—+dr( } - (2)

r+dr
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The heat flowing into the top of the anmilus fram the hot Fluld

i e

a = 2 Gy ~ 1) = £, 2 axlry — 1) (3?

The keat flowing out of the bottom of the arnulus into the cold Fliuigd . -

(k)

J—

@ = fPEA(t -T) = £p 2 art — 1_-2)_ )

The steady—state condition has been péstulated. f=1e] 'bha't‘: i.t is posaible
to equate the heat flowing into the annulus to the heat leaving the
annulus; thus .

Gy + 47 = Qpigr Q0 - (5)

Substitution of equations (1) to (4) intc equatiom (5) glves

2xich -;? <r %) dr = 2mr dr F‘PEQG -T,) - £, (1~ t)] (6)

Rearrangement and simplification of equetion (6) gives

n £ + fp T + fp To
o (R el (1)
iy Py j )
ij‘p_.’_"-l + fpeTE A } . i
The term P Py , which wlll be denoted by +twx, repressnts
- p tip _ . o _ _
— 1 2 . : .

the temperature which the plate would attain in the absence of the source,
(that 1s, the temperature of the plate at an infinite distance from the socurce).
Thus t — te 18 the rise 1n temperature of-the plate at any point dus to

the presence of the source. ' - o ) o

When & new variable 1s defined - | | : -

prl + fp To . R
'b':'t—. 1 2 =-t_-t°° (8)
fp + £

]
L]

e

Rt

.

ii

3
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and it is noted that

2
at?  at Crr dt
£ _ab and = =

the form of equation“(7) caen be changed giving

o d°%t att

et A67 _ gn.2pr - :
r =z +rdr Br=t?! = O e (9)
where
i + P . .
1 P>

This differential equation (9) is a modified Bessel equation for
wvhich the solution (reference 3) is

&% = 01T (fFr) + 0z, (/) (11)

In the determination of the constant Cj 1t can be observed that the
increase in plate tempersture (t% =t — 'bm) » due to the presence of
the source, must approach zero as r Increases. As a result, the
constant C; must be equal to zero because the functlon approaches
infinity as the argument approaches infinity. Thus the final solution is

% = CgKo (Br) | (12)
or
t — tw = OgFy (V) (13)

In the evaluation of the constant Cp 1t is necessary to define
the source more completely than it is defined by the conditions given
in ths postuletes. The most camnonly met source will be described by
the followlng conditions: (The simplifying assumptions regarding
direction of heat flow are retained.) : -
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e
1. Heat flow into the source from the hot fluld can be expressed -
by an equation of the form : o —
= ay(Ty — tg) (27 = Constant) (14) e
where tg 1s the temperature of the source . . R
2. The hegt flow ocut of the source Into the colder fluld can be _
expressed by an equation of the form . - .. =
= GE(ts - Tp) (ap = Consta.nt) _ (15) -
Equations for the conductances o and. dp are Presented in —
table I for several physical systema. R
The difference between the heat enterling and leaving the surfaces of )
the source disk 1s the heat conducted into the plats. s gp
R . o : _. Ll memm
dt d

0y, — g = XA (— = —2mrgbk — EJQKO VBr (16) )
1 2 dr r=rs d_'[' ( ) I=r5 -~ -
This equalilty becomes =
ap (1p = tg) — ap(ts — 7p) = 2mrgbikCy VAE; (vﬁ::s) (17) -

Substituting tg = tw + t'g and solving for C, glves

ar(m = ) + (T = t)
KO(\/—r )(ccl + “2) + 2mrgbk BK (VB (fr5> | (JLB.). |

i
il

The fo]ldwing material presented will concerm itself with' the thi'ee
principal spplications of-the solutions given here in the order given
below: T

(a) Determination of thermocouple error
(b) Heat transfer in pin—fin plates

(¢) Determinstion of correction factors for heat meters
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DETERMINATION OF THERMOCOUPLE ERROR

The determlmnation of plate temperatures by means of thermocouples
presents a difficult problem whenever the thermocouple lesds are

subjected to a temperature different from that of the plsate.

Because,

in general, the leads are at a temperature different fram that of the
plate, it is important that scme method be availlable to estimate the

resultant error in the temperature indicated by the thermocouple.
solution given in this report is easily applied to this purpose for the
case 1n which the thermocouple leads are attached in the Imenner shown

in figure (2).

When 1t is recalled that

and the comstant C,
be written as follows:

The temperature tg
Junction (the source) and thus is the tempsrature indicated by the
thermocouple (emf measurement usually by means of a potentiometer),

£571 + Bp
1+ fp 2

£ + £
Py

Py

aq + dpo + Enrsbkvp

Eh.QEr

X (fBrg)

is the temperature of the thermocouple

The

is written out, the solution (equation (13)) can

whereas t, can be considered as the true temperature of the plats.

Ths dlfference 1n temperature

thermocouple error.

(tg — tew) then represents ‘the

T2 _tw

Rewrlting the equation slightly and noting that =

gives

Tl"'tw

(29)

(20)
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This equabtlion, although en exact solution of the ldealized
gystem, s cumbersome and can be simplified with small error by
introducing a few approxlmations.

When the convention is adopted that the thermocouple is on the
side of the plate for which the varlables are denoted by the subscript 1
the followling simplifications can be made in equation (20). In usual
practice the value of ap will be much less than oy (table I,
systems 4 and 5) and terms including ap may be eliminated without
introducing much error; therefore, ‘equation (20) can be written

fs " e L (21)
1~ Y ) 2nrg Ky G@rs>
1+ & bkyB o (»/ﬁrs)

Two further simplifications can be made. Reference 3 gives asymptotic
approximations of Kp(x) and Ey(x) =as x—0,

C UKy (x)

1 . x< 0.05 . (22)
x

Ky(x) ¥ — log(F) = 0.577  x< 0.05 | (23)

s

For the second simpllfication, o, can be written as (see table I,
systems 4 and 5)

.

= EPikeAx; + \/fePészxg o ~(24)

For thermocouple leads of equal diameter thils conductance reducee to

oy = = BEgE (Vi + m;g) | (25)

If an equlvalent thermal conductivity ko 1is defined as

i

flt
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the equation can be further simplified to

ay = 21‘(1'1 |/2fekert . (27)

For the case of a bare thermocouple lead the
term fg 18 simply the average unit thermal con—
ductance f; for flow over a smell wire. The
equivalent unit thermal conductance for radiation
should always be included in f£;. When the leads
are covered by lnsulation of thickness & and
thermel conductivity k and when a thermal
resistance R, exlasts between the wire and the
Insuwlation, tﬁo term fo is writiten to ilnclude
these items as
Insulation

z
7
¢
/
¢
4
4
;
7
Z
4
-4
.
4
g
%

Insulated thermocouple
lead.
1 1 5
= + 2 + R,A (28)
To 1 E77©

where A 1s the heat—transfer area over which the thermal reslstence R,
applies. Comblinling the foregoing simplifications and noting thst for
oequal dlsmeters of the thermocouple leads \/§rT = Ty results in the
following equation:

-!:S — T i
— = (29)
17 Ve . R'Pb
1+
VBr
8
Tm |/2feKerT <—:Loge —— — 0.577
gy — )
8
For smell velues of ———f, the term in the denominator is large compared
Tl _ tw B
with 1; therefore N
.-t ‘[‘““‘“"_
8 ] o~ Im Efe]'-\-er[[l _ lOSe <\/_ng\ — 0.577 (30)
'Tl - 'too %b : /
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: ot -t
This equation can be used with small error for values of —— =

' -t
. N
less than 0.10. For larger values the more exact equations (20) or (21)
should be used.

Curves of thermocouple error for four comblnations of thermocouple
lead pize and the product of plate thermal conductivity and plate thickness
are -given in figures 3, 4;-and 5. The curves were calculated using
equation (21).

These curves indicate that the unit thermal ceﬁvectiveicenductancee .

over the plate fpl and fp have small effect on the thermocouple

error, whersas the error 1s se%sitive to the eguivalent unit- thermal
oonductance over the thermocouple leads. Thlg fact brings out the great——
importance of proper insulation of the thermocouple leads. . ITt-1s equally
apparent that whenever possible, the equivalent-thermal conductivity kg
of the thermocouple leads and the dlameter of the leads should be ag small
as possible. i

The following table gives velues of k, for several common
thermocouple leads. These equilvalent conductivities are only approximate
and are calculated for conductivities at room btemperature. However, In
view of the difficulty of accurate determination of the convectlve ’
conductances, and so forth, use of these values of kg at high
tempseratures should cause no hesltatlon.

Xe :
Thermocouple -
: (hr){sq £t)(°F/tt)
Chromel-elumel 16 R
Copper—constantan . ’
Iron—conetantan o 2l
Platinum—point rhodium 28

An estimatewf the magnitude of the thermal error encountered when
an attempt is made to measure the temperature of the surface of an erhaust—
Za8 and alr heat—exchanger msy be gained by copsideration of the
followlng example. :

It 1s desired to determine the temperature of a 0.030-inch-thick
stainless—sleel plate exposed on one slde to gas at 1500° F flowing at
150 feet per second and on the other slde to alr at 100° F flowing at
i00 feet per second. The thermocouple will be attached to the gas side
of the plate and will be made of No. 28 B. & S. gage insulated chromel-—

alumel wire.- ) ) < ] .

- e e X

o

il

"

T

|

e e i

e

i ik

i

- ﬁ ] i |

-



NACA TN No. 1h52 13.

The unit thermal conductances of the flulds flowing over the plats,
obtalned by using the equatlons in reference U are

£y = 16.5 Btu/(hr)(sq ££)(°F)

fP2 = 16.2 Btu/(hr)(sq £t)(°F)

The unlt thermal conductances of the flulds flowlng over the thermocouple
leads are determined, however, from the equation, or the graph, in rofer—
ence 5 because, for 'bhe preceding case, the value of the Reynolds modulus
is beyond the range of validity of the equation glven in reoference ki,
Use of the graph in reference 5 ylselds, for the unit thermal conductance e
over ‘the thermocouple leads: -

£, = £, = 160 Btu/(hr)(sq £5)(°F)

The ‘temperature indicated by the thermocouple ordinarily would be
calculated from equations (20), (21), or (30), but the solution of
equation (21) for the particula.r gystem 1s presented in figure 3.
Therefore, calculating = 2190 Btul/(hr)(°F)(£t3) and no’cing
that f o, + f = 32,7 131:11/5l hr)(sq £t)(°F), the ratio tg — - tu,

' Pa
ig found to be 0.0TY (fig. 3) from which the thermocouple error (t — o)
is calculated to be )

tg — oo

0.077(Ty — %)

0.07T7 X 692'= 530 F

]

‘The estimeted true temperature of the plate is thus

teo = tg — 53° F
where <ty 18 the temperature indlicated by the thermocouple.

When a thermocouple 1ls attached to a plate and the leads are placed
in thermal (not electrical) contact with the plate for meveral inchsa
from the Junction, ths heat that flows In the leads to or from the e
Junction, as the case way be, will be very small (due to the reduction
in temperature gradient slong the leads) and consequently 5, the therwal
error should be expected to be small, However, the disturbance of flow
over the leads will cause a locallzed Increase of the unlt thermal
convechive conductance. This will make the Junction hotter or colder
depending on whether the thermocouple is on the hot or cold sids and
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thus lnbroduce an error of unknown magnitude. This flow digturbance

may be reduced further by flattening or embedding the thermocouple wlires.
If the thermocouple lesds in conbtact with the plate are placed parallel
to and away from the direction of fluld flow, the installation should
have a smaller thermal exrror than the case illustrated in figure 2. o

Aleo, if the comvective conductances along the thsrmocouple 1eads
are approximately equel on both sides of the plate (hot and cold sides)
the error is emsall providing the leads are attached to opposlte sides of
the plate because the heat added to the surface by the lead on the
"hot—fluid side” is Just balanced by that carried away by the other lead
attached to the "cold—fluid side" of the plate. These solutions may be
used for two purposes:

(l) To estimate the true temperature which would exist if the
thermocouple were absent from a knowledge of the temperature at
the point of attechment +5 and the other terms in the equation.
(If a thermocouple is present- the true temperature is glven
by tw, the value far away from the polnt of attachment ).

(2) To predict the error t5 — te involved for a proposed experi— .
ment when the surface temperature +t, and the other terms are
ostimated.

Remarks

- In connection with the application of the equatlon for steady—
state temperature distribution to the determination of the thermocouple
error, 1t may be remarked that in any installation of a thermocouple the
thermal error can be mede small if the following precautions are e

observed: . —

(1) The thermocouple leads should_be brought out on the side of the
plate where ths unit thermal convective conductance over the leads will
be a minimum.

(2) The thermocouple leads should be well insulated thermally down N __;
to the polnt of comtact with the plate. '

(3) The thermocouple leads should be made of metals having low thermdl
conductivities. _ _ R—

(4) The thermocouple leads should be of small—diamater wire. R

(5) The thermocouple leads should be embedded in the plate maberilal e
if posseidle. ) _ S

Also, when a thermocouple 1is employed to measure plate temperatures d
the ﬁhermal error wlll: i - ==

(6) Increase with decreasing thickness and decreasing thermal
conductivity of the plate metal.
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(7) Increase with decreasing unit ‘thermal convective cond.ucta.nces
over the plate. :

(8) Increesse with increasing unit thermal convective conductance
over the thermocouple leads.

STEADY—STATE HEAT TRANSFER IN PIN-FIN PLATES

The questlon as to the effect of the plate thermal conductivity on the
heaet transferred by a pin—fin plate (fig. 6) arises frequently.
Ordinerily, for the case of heat transfer through thin metallic pletes,
the resistance of the plate to heat flow can be safely neglected in
calculations, but for pin—fin plates in which there exists a temperature
distribution elong the surface of the plate due to the finite conductivity
of the plate, the plate thermal conductivity (or thic]mess) can be of
Importance. ‘_‘

Steady—State Heat—Trensfer Equations for Limiting Plate
Thermal Conductivities

Heat £flow from the hot fluld at temperature T Into the plate can
be thought of as followlng two parallel paths into Jﬁhe plate; one
through +the pin fins into the plate, end the other from the hot fluld
into the nonplimmed portion of the plate.

In the plate two limiting conditions of plate thermal conductivity
are possible which wlll affect the heat flow through the pin-fin plate.
If the plate thermal conductivity pasrallel to the surface is postulated
to be infinite, the temperature of the pin bases and of the nonpinned
section of the pla:be mist be equal because no temperature gradlients could.
exist parallel to the surface. The other limiting condition is
encountered when the plate thermal conductivity perallel to the surface
1s zero. In this case the pin base temperature, +t, in the sketch
accompanying equation (32), would be independent of and, in general,
different from the temperature, +t, Iin thé same sketch, of the non—
pinned section of the plate because no heat would be able to flow
from one section of the plate to ancther. For both limiting cases
the heat maey be consldered to leave the plate by two parallel paths
gimilar to those by which 1t entered.

The accompanying sketch presents the thermal circult for a pln—fin
plate of infinlte thermal conductiviity in the direction parallel to the
surface. The equatlon giving the heat rate through this plate
(equation (31)) can be obtained in the same manner as the eguation for
the current in an analogous electrical circult can be obtalned.
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1
nay
1 + 1
I’J.(Il + T PlAu‘ Ild,l + f;-pe.Au
1 - 1
T2

Similarly the followling sketch glves the thermel circult for zero—
plate thermal conductivity parallel to the plate surface, and equation (32)
gives the heat—rate for this condltion.

Lk

The statement that the thermal conductivity of the plate normal to
the plate surface 1s Infinite, whereas that parallel to the surface is
zero, finite,or infinite;1s a type of idealization that is often
neceggary in obtalning mathematical solutions. Postulation of infinites
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thermal conductivlty normal to the surface 1s an accepteble idealization
because the thermal convective resistances on elither aslde of the plate
are lerge compared with the thermsl reslstance of the plate in the direction
normal to its surface. It will be seen later that the case of infinite
plate thermal conductlvity usually approximates the heat rate through a
pin—fin plate closely enough to permit use of equation (31), whereas the
case of zero thermal conductivity parasllel to the surface ls an idealiza—
tion which 1s never applicable to metallic plates.

Tt is clear that calculation of the heat—transfer rates by equations (31)
and (32) will yield two limiting values of heat rate between which the
heat rate for a plate with finite conductivity must fall.

Finite Thermal Conductlvity of Plate .

In order to determine the effect of finite~plate thermal con—
ductivity or thickness on heat—transfer rates, ap snalysis of the heat
flow through a pin—fin plate with infinite therfifil conductivity in
the direction normal to its surface but with a finite value in the
direction parellel to the plate surface will be mads.

The snalysis can be made in the followirng manner: Heat flow into
the pin base,

9pin = C“l('rl = f’b) | _ _ (33)

Heat flow lnto the unplnned plate,

Aplate = fplAu(Tl - too) (34)

Heat flow Into the plate with =n pins,

a4 = Fp Au(Ty = ) + nay (T~ tp) ~ ap (35)

where g, 1s the decrease in heat flow from the hot fluld to the exposed
surface of the plate due to 1ts rise 1in temperature a'btribu'ba’ble to the
prosence of the plns.

The equations defining heat flow and temperature distribution in
the plate are linear homogeneous differential equatlons so the ‘temperature
Pields and the heat trensfer due to each fin are additive. Thus the
heat—trensfer decrease (q, from equation (35)) is the sum of the
effects of the individual pins,
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n

v
1

The effect of a single pin 1s

A3ecrease =f Qﬂ'fl', (t—= %) ar (36)
. Tg 1
but
T =5, = Cp (\/Er)
therefore T : . AR B
- reky (\/Ers)
94ecrease ~ EﬁplC2T (37)

The efffect of m pinsg is

_ EnnrsfpiCQK- (;/Er s)

an = pe (38)
Thus the heat transferred by the pin—fin plate is
ormrgfp. Cok; (frg)
a = fpan(ry — ) + 0@y = %) - - (39)

The term Co cen be determined, as before, by making a hedt
balance on ‘the pin—fin base. When one pin In the plate is consldered,
the followlng can be wrilitten:

Heat treneferred into the pin base by the pin,

Q7 = oy (T1 — tp) (ko)

Heet transferred from the pin base by the opposite pin (or, for
an unpinned surfece, the heat transferred by the flat plate dlrectly

under the pin base),

q, = ap(ty ~ ) : (+1)

i
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Heat transferred from the pin base into the surrounding plate,

at d
e = 8 (8)_ = somp & ] o
plate (dr>r=rs 8° an o(f_) rerg :
or
9plate = EﬁrsbkCEVEKl<VEfé) (43)

When a heat balance 1s made the followlng equatlon ls obtalned:

.@1(71 — tp) + apTy - tb) | | (44
2ﬂrskaEKl<ﬁ&é)

Co =

When 02 is substlituted into equation (39), there 1s obtained

ar = £p bu(my ~ %) + ne(my = %)

ofp, [“1("'1 OREACE tb]
- ' (45)

fp

+ fP

1 2

Determination of the pin base temperature <+, wlll allow calcule—
tion of . The temperasture of the base of a pin fin can be consldered
assthe sum of the temperature that the base would have with no pins on
the plate 1te plus the temperature increase due to the pin covering the
base and the effects of all other pins.

For in-line equidistant pins (shown in the following sketch)
utilizatlon of the fact that the four quadrants surroundling any one

fin are symmetrlcal glves _
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ty = b, + Coo(/rg) + 40 %o(a‘/ﬁ) + Ko (ealB) + Ko (3a/8)
+ Ko(ba/B) + ..u + Ko(V2Be) + Ko(ev‘é‘a) ¥ Ko(sﬁa) +oaen
2 {%O(VEEaD + Kb(?/ﬁﬁa + oees Kb(#iaéé) + e +-Kb(/i_§a>

s (VTR + ]}

C>OOOO

Pin-fin spacing.

Ingsrting the value of Cp,
and resrranging resulte in

(ﬁb —:am)!;nrékaEKiGﬁfs)]
a1Ty + CpTo — ‘tb(ct.l + ‘12)

+ KO(3a.|/B_)+KO(1!-a.VF) + oere * Ko(v@_ﬁa) + ...] (%7)

which may be selved for ty.

conductivity.

OO0 00 0O

which containe the base ‘temperature ;fb,

= Ko (fFirg) + }-ILI%O(&VE) + Ko (22.1B)

Substibution of
glves the heat rate for a pin—Ffin plate with a Finite—value of plate
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(46)

-
i |

The terms in the series
represent the temperature increase
of the pin base due to the
temperature ilncrements of all
other pins. This series is for
equldistant in—line pine but—
other serles for any symmetrical
pin arrangements can easily be
obtalned. It should be noted
that the number of pine in an
actual pin~fin plate has no
bearing on the number of terms in
the series but that -the serlies
should, in any case, be calculated
for an infinite number of pins
(see the following discussion).
Fortunately the series converges
raplidly and the number of terms
glven in equation (46) will be
gufficient for most applications.

in equatlon (45) then
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Dilscussion

When conditions exist in a pin—fin plate which promote heat flow in
the plate radislly to or from the pln bases, the decrease in heat trans—
ferred due to the finite thermal conductlvity of the plate metal may be
appreciable. Figure T shows the effect of plate thermal conductivity kP
for a pin-fin plate chosen to magnify the effect.

From this flgure it can be seen that if the pin—Fin plate were made
of Tmcomel (kp = 7 Btu/(hr)(sq £t)(®F/ft)) 0.025—inch thick, the heat
transferred would be about 20 percent less than that for a pin—fin plate
of infinite conductlvity, whereas a pin-fin plate of copper 0.025—inch
thick would transfer 'abcut 2 percent less than the plate of iInfinite
conductlvity.

It can be seen from equations (13) and (18) that the thermal con—
ductivity of the plate always eppears in the product (bkp). For this
reason whatever 1s stabted concerning the effect of change of thermal
conductivity on the heat flow through pin-—fin plates slso applies to
the effect of change of plate thickmess.

The methematical anelysis of the pln—Ffin plabte has been wrltten
for a finite area and mumber of pins even though at one point it was
necessary to consider the plate as infinite in extent. The Justifica—
tion for thls procedure can be found in the Ffollowlng reasoning.

If one Imasgines the accompanyling
figure to be a section of an Iinfinite
pin—-fin plate, it can be stated that
no heat flows in the plabe adross the
midline AB Ybecause the ‘tendency
for flow in the two directlons is
equal. This 1s equivalent to stating
that the plate 1s cut at this line
and the cut edges are perfectly
Insulated. The temperature dis— :
tribution and the heat flow In both
gsections would be unaltered by the
change. Similar reasonlng for

other lines wlll produce an lsolated
section (with insulsted edges) of

the infinite pin~fin plate in

which the temperature and heat transfer
are unchanged from that of a plate

B of infinite extent.

O 00 OO0
O 00 0O
O 00 0O
O 00 0O
O 00 OO0
O 0000
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Remsrks

The following remarks apply to the second application of the
equatlion for steady-state temperature distribution:

l. In most cases it is possible to calculate the heat—transfer rate of
pln-fin plates by assuming the plate thermal conductivity to be
1nfinite.

2. Thin pin—fin plates of low thermal conductlivity should be analyzed
by the method presented 1f i1t is to be established that they do not
eppreciably decrease the heat—transfer rate below that which could
be obtalned by a plate of Infinite conductivity.

DETERMINATIOR OF STEADY—STATE CORRECTION FACTORS FOR HEAT METERS

The reat meter (refersnces 1 and 2) allows the determination of heat
flow through the meter by measurement of the temperature drop through the
thermal resistance of the meter. Although the thermal resistance of ths
moter is nade as small as possible, 1t nevertheless adds resistence to
the thermal circult to which it is applied, thus altering the heat rate
that this thermal circuit would have in the absence of the mster. For
this reason 1t 1s necessary to apply a correction factor to the hest
rate through the meter to obtaln the heat rate the thermal circuit
would have in the absence of the meter. Thils correctlon factor 1s
definsd as the ratio of the heat rate through the plate in the absence
of the meter to the actual heat rate through the meter (that is,
measured by the meter). When the notation glven iIn the following
figure is meed, the correction factor is qp/qy.

Methods of correction have been presented In references 1 and 2.
These corrections, however, have postulated that the heat flows only 1in
the directlon normal to the plate and meter surfaces (that is, that
there exists no heat flow "around" the meter). This postulate 1s
closely realized In the meter bub, due to the high thermal conductivity

Py

AN il

Py - -

Heat-flow lines 1in a heat meter. Eeat meter shown with zero
thermal conductivity parallel to surface so that heat-flow
lines are parallel thersin.

i3

i .H“L
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of metals, is in error when appllied to the metal plate covered dy the

heat meter. If, for exaemple, the meter is on the hot side of the

plate, more heat will flow into the plate than into the meter due to its’ ,
insulating sffect. Part of the heat which flowed into the exposed ' -
plate will then flow in the plate parsllel to its surface into the

sectlon under the meter because of the lower temperature of thls section
produced by the insulating property of the meter. Conversely, if

the meter 1s on the cold side of the plate, heat will flow from the sectim
under the meter infio the surrounding plate. It is clear them that a

correction to the measuremsnt of heat rate by the meter which wlll include

the effect produced by the heat that flows through the surface and then

around the meter 1s deslirable.

In order to obtaln a solubion it will be necessary to define the
system by the followlng postulates.

(1) The heat meter is cilrcular.

(2) The thermsl conductivity of the heat meter 1s zero in the
directlon parallel to lts surface. R

(3) Thermal conductivity of the metal plete is infinite in the
directlon normal to its surface.

(4) Fluld temperatures and unit thermal conductances are uniform
over the plate and meter surfaces. (Unit thermal conductances
over the plate and meter may differ.)

Two solutions for the correctlon factor for the meter will be
obtained. The first solution will require an additional postulate that
the thermel conductivity of the plate metal under the meter is infinite
(that is, there are no temperature gradienmts in the plate under the
moter). The second solution, which will be more difficult to use but
will approach the actual system more closely, will be based only on T
postulates (1) to (), or, in other words, the temperature distribution
under the meter will be consldered a varieble in the second solution.

The analyses will consider the heat meter to be placed on the side
of the plate for which the variables are denoted by the subscript 1.
Filrst Solution

The heat that flows through a flat plate subjected to fluids of
different temperature on either side is

a = fplAm(Tl -ty (48)
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If @ heat meter is now attached to the plate, the heat that flows
through the meter is given by equatlion (1k)

I = a(ry - tg) | (49)

wvhere +tg5 18 the temperature of the portion of the metal directly under—
neath the meter (which 1s considered uniform for this first solution
(see following figure)) Also

1 1 8

@ fofm o kpAp C (50)

I
+

When

C1-ty) = (1 —te) + (ko — ta)

and it is observed that the system is the same as the one for which the
general solution (equation (13)) was obtained, the temperature distribu—
tion in the metal surrounding the nmeter can be represented by

b = & = ~0pK,(yBr)

and at 1 = Tys

to — b —CEKb<yEré>

The value of Cy 18 determined by means of a heat—balance on the
portion of the plate directly under the meter which has been previocusly
obtalned 1n the derivation of equation (18). The values of oy~ end ey
are glven In table I under system 3.

________ﬂ_______lﬁgifferature distribution In the plate ™
+ ///"_—ﬁ
// 8

r )
0 -
s s I
b | £ 1° i o
! h~ } Py
b f ! S
f e x - — - fpg
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Thus the value of Ay is

m = (‘l’l - tra) - d,lcho(\/EI‘g) _”(51)

When the heat rate through the plete when the meter ls absent
(qp from equation (48)) is divided by the heat rate through the meter
(an from equation (51)) the correction factor by which the heat—
transfer rate indiceted by the heat meter must be multiplied 1s

o, (1 ~ t)
e ey ala@ =) + @@ ~ bl Ko (VBr)
l(.l tx’) Xq (ﬁrs> (0"1 + a?) + .2n'skaEKl (!/Er_s)_

(52)

gl&

recalling that

£
2 - tco _ Pl
T. —%. T
1 Feo Py .

This equation can be rewritten as

fPlAm
o d,l(ml %, T pr;) (53)
@ +oan + Enrsbkﬁml

Ko (‘/B-rs)

18

or as
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L+ 1
g = (5k)
o1+ L1
g f
pPm  fp An
2mrbleB K Q/Br
8 1 g
where A = ) end the terms %+ and f-—l— are the
Ko (-I’Brs) @ m _
thermal resistances in specific portions of the thermal circult. —
Because most heat meters are square, it is necessery to determine
some equivelent source radius rg. Thils radius can be calculated by setting
the meter area equal to the area of an equivalent circle and defining rg
as (see accompanying sketch) o
An
. rs —?r- (55) e
_ - \\\ ;
// ~N
Vg ~
/ Y
/// /\\
, Equivalent circle / \
4 ‘\
/ £ \
h) £ mr;-um-m..-,.u-.-huymmu '9'& 3
,' K g \
I : & \ |
! : L \/‘i |
! \§ / !
\ ] /
E\ /3 I N
\ L|r|l>7luwmm-mnmnuunuﬁm-| i
\ = !
\ ’
/
N Thermoplle section //
\ /
\\ ’/
N e
~ - - - PR~



NACA TN No. 1b52 2T

Equation (54) can be used to show the effects of the two limiting
values of the plate thermsl conductivity parallel to the surface (that
is, k=0 and k =e).

For the use of zero thermal conductivity parallel to the plate
surface, the value of A\ is zero, and equation (54) reduces to

1 1 —l-+i+Am'R +-—l—-
3)__ d’l+q‘2 _fn kIﬂ- G. f:pg . (6)
U L 1 . ‘ =
P]_ +fP2Am $+§
1 P2

Thus, for this case the correction factor is the ratio of the

thermal resistance 2 + s, which the heat overcomes when flowing

L %
from the hot fluld through the meter and plate to the cold fluid, to

1 +F L which the heat overcomes when flowlng
1Am Dy

from the hot £luld through the plate to the cold fluid without the meter
in place.

that reslatance <§
)

This result is the same as that glven by equation (10) of reference 1
in which case the flow around the meter was postulated to be zero (that
is, k 1in the direction parallel to the surface i1s zero). A slight
difference, however, exists between equation (56) and equation (10) of
reference 1 in that the thermsl resistance of the plete perpendicular to
the surfece 1s not included in equation (56). The diPference inmtroduced
by this omisslion is negligible for metalllc plates but equation (56) can
be made to include this resistance by defining a new term fp ! which

can be calculated from 2
1 1 b
Y=t g (57)

and can be used In the equations Iin place of fp .
2

If the other 1limiting value of the plate thermsal conductivity
parallel to the surface, k equals infinity, is used, then equation (5%)
becomes
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A2
4% & 2 -
= Y T '
fp l'Anl. fPlAm s - _':é

FR
i

The correction factor for this case can be 1nterpre'bed_ aé fhe ratio

of the resistance to hest flow G—J'i-, from the hot fluid through the meter
and then into the plate, to the thermal resistance

from the
P
hot fluld directly into the plate without the meter in place.

Table IT presents values of 40/qy Obtained from equations (S54),

(56), and (58) for zero, finite, and infinite thermal conductivity of
the plate to which the heat meter is attached,

Second. Solution

A solution more closely approximating the actusl heat Fflow conditions
can be obtalned by including the temperature distribution parallel to the
surface in the metel under the meter. Thus if the thermal conductivlty
of the plate—1s postulated finite in the direction parallel to the plate
surface, the following equations which give the temperature distribution
for the plate can be written. : ) T T

too Temperature distribution ~ . o T L:
.~ P S =
: . Equation (62)

Equation (6k4) Equation (64) .
by - ' S

8 I‘ m. " b i

‘ l . l Hot

G L 'y 3 el
! 1 _ Cold L



NACA TN No. 1Ls52 : 29

The temperature dlstribution in the plate under the meter 1is
glven by the following equatlion (see equation (11)) when 0 <r < ry

b = ooy = OyTo (VBmx) + Ko (Ie) (59)

and, similerly, for the temperature distribution In the plate not
covered by the meter when rp< r<e

t—-t, = Cl*IO([/E;r> + CotKy (‘/B;r) (60)

P

1l
o
&
"rg
2

T + £
P, P 2
B =
P bk (sq £%)
1 1 o) 1
= =—— 4+ — + R,A
£ fp, 'm * Btu/(hr)(sq £t)(°F)
A aree over which conbtact reslstance R, epplies, square feet

3 heat meter thickness, feet

temperature which section of plate under meter would attain if
thermal conductivity of plate parallel to plate surface were zero,
or, the equlvelent, temperature which plate would attain 1f me'ber
wore Infinite in extent. Defined as

 EyTy + Ty

5, =
“m fp + £

3

Po

te  temperature which plate would attaln if heat meter were absent;

fp,"1 + fp,Tp
fep T T 4z, °F
By by
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At r = 0 it is necessary that the heat flow parallel to the platbe

surface be zero, that-is:

),

or ’ T

di:)
—_—) =0
drr:O

Differentiasting equation (59),

dt
dr

Ty () — o Voo (1)

for r =0, %

mist be zero. Thus equation (59) becomes

6 = tayy = 170 (i)

At r = o 1t is necessary that §,
be equal to b ; consequently,

equation (60) ggves

t = te = 0 T (ffpr) + Co'Ky (Fex) = ©

0, and I, (ffgr) =0, but K (fﬁl_nr)

(61)

= o; therefore Cg

(62)

the tempersture of the plate,
(t — twp) =0 at r

w, Thus at r =

(63)

At r =, I, (ﬁ_pz) = w; therefore the constant C;'! must be zero. As a

result, equation (60) beccmes

t = %y, = Cp"Ko (px)

ih!

(6)

— . s i

n1-,-,
il

i

bi
I

i

1

i |

]
'
Y

S
il o

i
k|

-
= LI
=

iy
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Two remaining boundery condltions can be stated. First, the
temperatures given by equations (62) and (64) must be equal at r = ry.

011 (I/B_mrm> + B = Co'Ky (l/B_prm) + ‘beop (65)

Secondly, at r = r, equations (62) and (64) must give the seme heat
flow parallel to the plate surface or, stated mathematically, the
derivatives of the equations with respect to length r must be egqual,
Thus at r = r ’

01 /BTy (Wrm) = ~O2" VBrEy (fRpr) NG

The heat that flows through the thermopile section (radius rg) of
the heat meter is '

g

frs orey(t — 7y) ar N (67)
o o

writing

t =1 = (b= tay) + (e —T1) o (e8)

equation (67) becomss
2 s
Uy = mrg fm<-b°,h - -rl) + 2afyCq L rIo(\/Emr) ar

. 2rfmCyrely (\/E;nrs)
VBu

(69)

T':':'52"4"13.1. (t“m - Tl)

Solving equations (65)and (66) for the constant C; end inserting
1ts value in equation (69), there results for g, the squatlon



- -
g = °F (t T ) + .l (ﬂrs) i (70)
= wfte —
R & P, () Ko (Vi) .
: o (Butm) + ko
| VB (Fpm) |
In the aﬁsanoa of the meter, the heat 1y thet would flow through the same ares :r::'B2 |
(area of plate covered by thermopile section of heat meter) is ! i
9 = xrsefpl(bmp - T]_) (1) !
The correction ratio is thus
2, .
- P]_(t"b l) (72)

+ Prtarshy (\/ﬁ;rs) I by — Ty ]
+ ‘lel (\fﬂ_mrm)xo (;ﬁ;rm)
o) )

BCRT CON NI VYN . .. il

x

S gl - |
HERCR g . '

i« i . . . . . _ ,; - ,It j;:
I o _, I B T IR _Liunema _\isgt_ai;,;a
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Noting that
t 71 ) o, * Tp, By
Sy =2 o fpe "o
equation (72) can be simplified to
% fpl/fm
rol = 5 _ — (73)
%+ 2 I]_(\/B—m'l‘s) l_-ﬂ; -
Vs VBaTy (V)Xo (o)
IO (\[‘_;_I‘m) +
] ey (Bpr)

Teble II presents correction factors calculated by means of
equations (53), (56), (58), and (73) for the perticular system plctured
in the table. The heab-meter correction factors presented In the first
three columms are for the case in which the meter is placed ‘on one side
of the plate (the side with high f_), and the remaining three columns
present the results for the case whgn the meter 1s on the opposite silde
of the plate (the side with low fy).

It can be observed from the results presented in table .IT that the
heat-meter correctlion factors are considerebly larger when the meter i1s
placed on the side with the higher fP (thet is s lowest thermal
resistance). The importance of the location of the meter is thus
eapparent. A comparison of the results for the case in which the plate
thermel conductlvity is 100 reveals that the two methods of solutlon
Yleld approximately the same value of g_o/q_m, This 1s especlally so
when the correction ratio is less than 1.3. Of course the applicability
of the heat-meter 1s questionable when the ratio is larger than 1.3.

It should be noted that the exemple chosgen here 1s one that will
nagnify the range of correction factors obtained by the various equations
and that thess factors are larger than those ordlimnarily encountered.

It will be noticed that the plate thermsl conductivity and the
plate thickness always appear in the Pproduct b, Thus if it 1s sald
that the correction factor increases with Increasing plate conductivity,
it may slso be sald that 1t increases with the plate thickness in the
same proportion.
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Ths second solution (equation (73)) shows that-the larger the veluse
of 1y, the smaller will be the correctlon factor which will apprecach the
velue given by equation (56), as a Limlt, as r, 1s Increased. This
fact has led to the use of gu.a.rd. rings of the same thickness and .
material around the heat meters. : : - S

In actual application the unit thermal conductance may very along
the meter surface because the meter acts as a flat plate In an alr
gtreem (mee figure on page 15 of referemce 2). The guard rings
mentioned are useful In minimizing this variation.

Remarks

The followlng remarks apply to the third application of the
equation for steady—state temperature distribution:

1. Two ecuations ((53) and (73)) have been derived which are useful in
the egtimation of hest~mebter correction factors which include
conasideration of-heat flow arocund the meter.

2. The use of the second, more exact equation (73) 1s not werranted
except for the case of large correction factors (say, qo/qm > 1.5).

3. Table II indicates the importance of the location of the heat meter.
It 1s epparent that the meter should be located on the side of the
plate with the highest thermal resistance (lowest unit thermal
convective conductances). _ B P

L, Tgble TT elso shows the effect of varilation of the thermal con—
ductivity of the plate—om this correction factor. For the case iIn
which the thermsl resistance of the plate in the directlon normal
to its surface ie small (that 1s, metallic plates), these results also
show the effect of thickness of the plate on which the meter is :
mounted. - =

5. Equations (53) and (73) indicate the advisability of placing a guerd
ring around the meter.

Departmens of Hnglneering : -
Universlty of California Do . S
Berkeley, Celif., August-17, 19kl _ -
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APPENDIX

The notatlons used for Bessel's functlons by various authors differ.
wilth the result that there is some confusion in thelr use. A table of
equiva.lence of symbols for Bessel's functlons is given in reference 3
(p. 64). The modified Bessel function of the second kind vy order

(Ky(x)) wused in this report is equal to %ﬂiv"'le(l)(ix) where E.v(l)(ix)
1s the Hankel function given in Jahnke and Emde (referemnce 6).
The equations presented In this report have been written where

possible ?o)’cha'b the Bessel functions appear (or cen appear) as the
Ki(x
1

ratio m.

From the foregoing discusasion it can be seen that

Ky () —-Hl( )(1::)

T e W) | | —

or 1n other words it 1s unnecessary 'l:o convert the Hankel functions to

Eq(x
Besggel functions when the ratio —J-'T—)- i1s used.

The following approximations (reference 3) will be useful for small
velues of the argument x. )
For 0 < x<0.05 R

Eo(x) ¥ -logy(¥) - 0.577
and when O < x < 0.05

K (x) =

Kl(_JC) .
Figure 8 gives the varlation of m)- ag a function of x.
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TARIE T
VALUES OF a1, o, AND r, FOR VARIOUS SYSTRMS
No. System an an Ty
Single pin fin
£, P.
1 IT_" 2rg \Ellez X tanh T‘?I.IiLl :\:rs‘?:‘.’:p2 Shown
1
) id
. P. f£oP,
1°1 2
2 \E1E1K1Ay X temh Ly |{E2Pokohy X tank \’-2—- Shown
Insulating disk
(heat meter) 1
ﬂﬁa 2 Sh
3 8 ~Tg ;—- + E; + R, p fp2 own
b i ot h
Bare thermocouple
: 2 2 2
b \E1PyinAy, + \lePekgA.xe T, Ty = \’rl + Ty
2ry 22‘2
Insulated
thermocouple \jgplkl‘“:l + \IfepzkeA:x:e ]
2 \’ 2 2
®r, T r, = \rm° +
5 o i _1 + s, RoA 8 *Pp 8 1 2
2 fo f1 k
ar)

§
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COMPARISON OF VALUES OF q./q,,

1Values obtained from following equations:

System A System B
1 !l 3 n 1_“ 3 m
b = = f =20 6= = f = 20 b = = =206 = =2
L g ) 16 P " 0 b
E{f T rd < T '3 e
= 3 ‘_r' =3
r, =0.2121 ipz f, =3 fpz_ .
r., = 0.0833 it rm = 0.212 £t ry = 0.0833 ft-
k = 0.1 Btu/(hr)(sq ft)(°F/1t) k= 0.1 Btu/(hr)(sq ft) (OF/1t)
Ky 0 100 oo 0 100 oo
First
solutionl| 1.10 1.50 1.78 1.10 1.11 1.12
Secor}d 9 1.40 1.11
solution
'

For zero thermal conductivity, equation (56}
For finite thermal conductivity, equation (53)
For infinite thermal conductivity, equation (58)

ZVa.lues cbtained from eguation (73).

l

1
il

I

“IH H
ik |

u;i:"i ‘N
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Source radius rg

Differential annulus

Figure 1.- Source.and differential annulus in flat plate.

2Very

}b
Y
VLT 77 77 7 T 777777 7 7 7 77

T

Figure 2.- Installation of thermocouple in section of plate.
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Figure 5.- Summary of thermocouple error for fpl +fp, = 20 Btu/(hr)(sq ft)(CF).
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Figure 6.- Section of pin~fin plate. Pins on one side only.
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